This reference page provides information for working with dagster-snowflake features that are not covered as part of the Snowflake & Dagster tutorials ( resources, I/O managers).
In addition to password-based authentication, you can authenticate with Snowflake using a key pair. To set up private key authentication for your Snowflake account, see the instructions in the Snowflake docs.
Currently, the Dagster's Snowflake integration only supports encrypted private keys. You can provide the private key directly to the Snowflake resource or I/O manager, or via a file containing the private key.
Using a Snowflake resource, you can execute custom SQL queries on a Snowflake database:
from dagster_snowflake import SnowflakeResource
from dagster import Definitions, EnvVar, asset
# this example executes a query against the IRIS_DATASET table created in Step 2 of the# Using Dagster with Snowflake tutorial@assetdefsmall_petals(snowflake: SnowflakeResource):
query ="""
create or replace table iris.small_petals as (
SELECT *
FROM iris.iris_dataset
WHERE species = 'petal_length_cm' < 1 AND 'petal_width_cm' < 1
);
"""with snowflake.get_connection()as conn:
conn.cursor.execute(query)
defs = Definitions(
assets=[small_petals],
resources={"snowflake": SnowflakeResource(
account="abc1234.us-east-1",
user=EnvVar("SNOWFLAKE_USER"),
password=EnvVar("SNOWFLAKE_PASSWORD"),
database="FLOWERS",
schema="IRIS",)},)
Let's review what's happening in this example:
Attached the SnowflakeResource to the small_petals asset
Sometimes you may not want to fetch an entire table as the input to a downstream asset. With the Snowflake I/O manager, you can select specific columns to load by supplying metadata on the downstream asset.
import pandas as pd
from dagster import AssetIn, asset
# this example uses the iris_dataset asset from Step 2 of the Using Dagster with Snowflake tutorial@asset(
ins={"iris_sepal": AssetIn(
key="iris_dataset",
metadata={"columns":["sepal_length_cm","sepal_width_cm"]},)})defsepal_data(iris_sepal: pd.DataFrame)-> pd.DataFrame:
iris_sepal["sepal_area_cm2"]=(
iris_sepal["sepal_length_cm"]* iris_sepal["sepal_width_cm"])return iris_sepal
In this example, we only use the columns containing sepal data from the IRIS_DATASET table created in Step 2 of the Snowflake I/O manager tutorial. Fetching the entire table would be unnecessarily costly, so to select specific columns, we can add metadata to the input asset. We do this in the metadata parameter of the AssetIn that loads the iris_dataset asset in the ins parameter. We supply the key columns with a list of names of the columns we want to fetch.
When Dagster materializes sepal_data and loads the iris_dataset asset using the Snowflake I/O manager, it will only fetch the sepal_length_cm and sepal_width_cm columns of the FLOWERS.IRIS.IRIS_DATASET table and pass them to sepal_data as a Pandas DataFrame.
The Snowflake I/O manager supports storing and loading partitioned data. In order to correctly store and load data from the Snowflake table, the Snowflake I/O manager needs to know which column contains the data defining the partition bounds. The Snowflake I/O manager uses this information to construct the correct queries to select or replace the data. In the following sections, we describe how the I/O manager constructs these queries for different types of partitions.
To store statically-partitioned assets in Snowflake, specify partition_expr metadata on the asset to tell the Snowflake I/O manager which column contains the partition data:
import pandas as pd
from dagster import AssetExecutionContext, StaticPartitionsDefinition, asset
@asset(
partitions_def=StaticPartitionsDefinition(["Iris-setosa","Iris-virginica","Iris-versicolor"]),
metadata={"partition_expr":"SPECIES"},)defiris_dataset_partitioned(context: AssetExecutionContext)-> pd.DataFrame:
species = context.partition_key
full_df = pd.read_csv("https://docs.dagster.io/assets/iris.csv",
names=["sepal_length_cm","sepal_width_cm","petal_length_cm","petal_width_cm","species",],)return full_df[full_df["Species"]== species]@assetdefiris_cleaned(iris_dataset_partitioned: pd.DataFrame):return iris_dataset_partitioned.dropna().drop_duplicates()
Dagster uses the partition_expr metadata to craft the SELECT statement when loading the partition in the downstream asset. When loading a static partition (or multiple static partitions), the following statement is used:
When the partition_expr value is injected into this statement, the resulting SQL query must follow Snowflake's SQL syntax. Refer to the Snowflake documentation for more information.
When materializing the above assets, a partition must be selected, as described in Materializing partitioned assets. In this example, the query used when materializing the Iris-setosa partition of the above assets would be:
Like statically-partitioned assets, you can specify partition_expr metadata on the asset to tell the Snowflake I/O manager which column contains the partition data:
import pandas as pd
from dagster import AssetExecutionContext, DailyPartitionsDefinition, asset
@asset(
partitions_def=DailyPartitionsDefinition(start_date="2023-01-01"),
metadata={"partition_expr":"TO_TIMESTAMP(TIME::INT)"},)defiris_data_per_day(context: AssetExecutionContext)-> pd.DataFrame:
partition = context.partition_key
# get_iris_data_for_date fetches all of the iris data for a given date,# the returned dataframe contains a column named 'time' with that stores# the time of the row as an integer of seconds since epochreturn get_iris_data_for_date(partition)@assetdefiris_cleaned(iris_data_per_day: pd.DataFrame):return iris_data_per_day.dropna().drop_duplicates()
Dagster uses the partition_expr metadata to craft the SELECT statement when loading the correct partition in the downstream asset. When loading a dynamic partition, the following statement is used:
When the partition_expr value is injected into this statement, the resulting SQL query must follow Snowflake's SQL syntax. Refer to the Snowflake documentation for more information.
When materializing the above assets, a partition must be selected, as described in Materializing partitioned assets. The [partition_start] and [partition_end] bounds are of the form YYYY-MM-DD HH:MM:SS. In this example, the query when materializing the 2023-01-02 partition of the above assets would be:
In this example, the data in the TIME column are integers, so the partition_expr metadata includes a SQL statement to convert integers to timestamps. A full list of Snowflake functions can be found here.
The Snowflake I/O manager can also store data partitioned on multiple dimensions. To do this, you must specify the column for each partition as a dictionary of partition_expr metadata:
import pandas as pd
from dagster import(
AssetExecutionContext,
DailyPartitionsDefinition,
MultiPartitionKey,
MultiPartitionsDefinition,
StaticPartitionsDefinition,
asset,)@asset(
partitions_def=MultiPartitionsDefinition({"date": DailyPartitionsDefinition(start_date="2023-01-01"),"species": StaticPartitionsDefinition(["Iris-setosa","Iris-virginica","Iris-versicolor"]),}),
metadata={"partition_expr":{"date":"TO_TIMESTAMP(TIME::INT)","species":"SPECIES"}},)defiris_dataset_partitioned(context: AssetExecutionContext)-> pd.DataFrame:
partition = context.partition_key.keys_by_dimension
species = partition["species"]
date = partition["date"]# get_iris_data_for_date fetches all of the iris data for a given date,# the returned dataframe contains a column named 'time' with that stores# the time of the row as an integer of seconds since epoch
full_df = get_iris_data_for_date(date)return full_df[full_df["species"]== species]@assetdefiris_cleaned(iris_dataset_partitioned: pd.DataFrame):return iris_dataset_partitioned.dropna().drop_duplicates()
Dagster uses the partition_expr metadata to craft the SELECT statement when loading the correct partition in a downstream asset. For multi-partitions, Dagster concatenates the WHERE statements described in the above sections to craft the correct SELECT statement.
When materializing the above assets, a partition must be selected, as described in Materializing partitioned assets. For example, when materializing the 2023-01-02|Iris-setosa partition of the above assets, the following query will be used:
SELECT*WHERE SPECIES in('Iris-setosa')AND TO_TIMESTAMP(TIME::INT)>='2023-01-02 00:00:00'AND TO_TIMESTAMP(TIME::INT)<'2023-01-03 00:00:00'
If you want to have different assets stored in different Snowflake schemas, the Snowflake I/O manager allows you to specify the schema in a few ways.
You can specify the default schema where data will be stored as configuration to the I/O manager, like we did in Step 1 of the Snowflake I/O manager tutorial.
To store assets in different schemas, specify the schema as metadata:
When storing a Pandas DataFrame with the Snowflake I/O manager, the I/O manager will check if timestamp data has a timezone attached, and if not, it will assign the UTC timezone. In Snowflake, you will see the timestamp data stored as the TIMESTAMP_NTZ(9) type, as this is the type assigned by the Snowflake Pandas connector.
Prior to dagster-snowflake version 0.19.0 the Snowflake I/O manager converted all timestamp data to strings before loading the data in Snowflake, and did the opposite conversion when fetching a DataFrame from Snowflake. If you have used a version of dagster-snowflake prior to version 0.19.0see the Migration Guide for information about migrating database tables.
Using the Snowflake I/O manager with other I/O managers#
You may have assets that you don't want to store in Snowflake. You can provide an I/O manager to each asset using the io_manager_key parameter in the asset decorator:
import pandas as pd
from dagster_aws.s3.io_manager import s3_pickle_io_manager
from dagster_snowflake_pandas import SnowflakePandasIOManager
from dagster import Definitions, EnvVar, asset
@asset(io_manager_key="warehouse_io_manager")defiris_dataset()-> pd.DataFrame:return pd.read_csv("https://docs.dagster.io/assets/iris.csv",
names=["sepal_length_cm","sepal_width_cm","petal_length_cm","petal_width_cm","species",],)@asset(io_manager_key="blob_io_manager")defiris_plots(iris_dataset):# plot_data is a function we've defined somewhere else# that plots the data in a DataFramereturn plot_data(iris_dataset)
defs = Definitions(
assets=[iris_dataset, iris_plots],
resources={"warehouse_io_manager": SnowflakePandasIOManager(
database="FLOWERS",
schema="IRIS",
account="abc1234.us-east-1",
user=EnvVar("SNOWFLAKE_USER"),
password=EnvVar("SNOWFLAKE_PASSWORD"),),"blob_io_manager": s3_pickle_io_manager,},)
In this example, the iris_dataset asset uses the I/O manager bound to the key warehouse_io_manager and iris_plots will use the I/O manager bound to the key blob_io_manager. In the Definitions object, we supply the I/O managers for those keys. When the assets are materialized, the iris_dataset will be stored in Snowflake, and iris_plots will be saved in Amazon S3.
Storing and loading PySpark DataFrames in Snowflake#
The Snowflake I/O manager also supports storing and loading PySpark DataFrames. To use the SnowflakePySparkIOManager, first install the package:
from dagster_snowflake_pyspark import SnowflakePySparkIOManager
from dagster import Definitions, EnvVar
defs = Definitions(
assets=[iris_dataset],
resources={"io_manager": SnowflakePySparkIOManager(
account="abc1234.us-east-1",# required
user=EnvVar("SNOWFLAKE_USER"),# required
password=EnvVar("SNOWFLAKE_PASSWORD"),# password or private key required
database="FLOWERS",# required
warehouse="PLANTS",# required for PySpark
role="writer",# optional, defaults to the default role for the account
schema="IRIS",# optional, defaults to PUBLIC)},)
When using the snowflake_pyspark_io_manager the warehouse configuration is required.
The SnowflakePySparkIOManager requires that a SparkSession be active and configured with the Snowflake connector for Spark. You can either create your own SparkSession or use the spark_resource.
Using Pandas and PySpark DataFrames with Snowflake#
If you work with both Pandas and PySpark DataFrames and want a single I/O manager to handle storing and loading these DataFrames in Snowflake, you can write a new I/O manager that handles both types. To do this, inherit from the SnowflakeIOManager base class and implement the type_handlers and default_load_type methods. The resulting I/O manager will inherit the configuration fields of the base SnowflakeIOManager.
from typing import Optional, Type
import pandas as pd
from dagster_snowflake import SnowflakeIOManager
from dagster_snowflake_pandas import SnowflakePandasTypeHandler
from dagster_snowflake_pyspark import SnowflakePySparkTypeHandler
from dagster import Definitions, EnvVar
classSnowflakePandasPySparkIOManager(SnowflakeIOManager):@staticmethoddeftype_handlers():"""type_handlers should return a list of the TypeHandlers that the I/O manager can use.
Here we return the SnowflakePandasTypeHandler and SnowflakePySparkTypeHandler so that the I/O
manager can store Pandas DataFrames and PySpark DataFrames.
"""return[SnowflakePandasTypeHandler(), SnowflakePySparkTypeHandler()]@staticmethoddefdefault_load_type()-> Optional[Type]:"""If an asset is not annotated with an return type, default_load_type will be used to
determine which TypeHandler to use to store and load the output.
In this case, unannotated assets will be stored and loaded as Pandas DataFrames.
"""return pd.DataFrame
defs = Definitions(
assets=[iris_dataset, rose_dataset],
resources={"io_manager": SnowflakePandasPySparkIOManager(
account="abc1234.us-east-1",
user=EnvVar("SNOWFLAKE_USER"),
password=EnvVar("SNOWFLAKE_PASSWORD"),
database="FLOWERS",
role="writer",
warehouse="PLANTS",
schema="IRIS",)},)